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Partial-Wave Analysis of the Inelastic Scattering of Electrons by Nuclei. 
III. Systematics of Electric Multipole Excitation* 
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The distorted-wave method for inelastic electron scattering is applied to a range of nuclei displaying elec
tric multipole excitations under electron bombardment. I t is found that a phenomenological vibrator model 
of the nucleus can, to a large extent, account for the behavior of the electron inelastic cross sections 
available from experiment, although, in many cases, the measured points cover an insufficient range of 
momentum transfer to make distinct the mode of vibration to be attributed to the excited nucleus. 

I. INTRODUCTION 

IN two previous papers1'2 (referred to as I and II in 
this text) a method for distorted-wave calculation 

of inelastic electron scattering from nuclei was proposed, 
and used to predict differential cross sections for electric 
quadrupole excitations of target nuclei. In II a simple 
phenomenological model of electric excitations was shown 
to give a fair description of existing data on electron 
stimulated quadrupole excitations. In the present paper 
(in Sec. II) the extension of this technique to higher 
multipole excitations is discussed, and (in Sec. Ill) 
some general observations are made on the introduction 
of distorted waves as compared with the plane-wave 
Born approximation. Data on several nuclei which 
show a number of electric multipole excitations in elec
tron scattering experiments, are examined in Sec. IV 
and values are given of the transition probabilities 
necessary to account for the observed magnitude of the 
cross section in each case. Where some ambiguity as 
to the correct multipolarity to be assigned to a given 
transition is apparent, it is suggested (in Sec. V) that 
measurements at low-momentum transfer (incident 
energies around 50 MeV and forward angles) would be 
valuable. Finally (in Sec. VI) conclusions and com
ments are presented on the usefulness of excitation by 
electrons as a probe of nuclear excited states. 

II. DESCRIPTION OF VIBRATIONAL STATES 

The transition is described, following I and II, by 
means of a transition charge density ptrans(r) which 
characterizes the contribution of the nuclear transition 
to the scalar part of the electromagnetic interaction be
tween the electron and the nucleus. An argument is 
presented in the Appendix indicating the conditions un
der which the sum effect of longitudinal and transverse 
electric-interaction terms can be neglected. For an 
electric multipole transition of order L and energy fio) 

we may write 
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Ptrans W = PL(T)YL
A '(Me* (1) 

where the radial part pL(r) is, in principle, subject to 
determination from study of electron excitation of this 
state just as the ground-state charge distribution p0(r) 
may be determined from elastic electron scattering. The 
actual extraction of ph(r) from the measured cross sec
tion is not a simple matter in the distorted-wave theory 
used in this paper, but it is noted that the transition 
charge density enters the calculation only through the 
cutoff function3 C(r) and this is quite insensitive to 
the behavior of the transition charge density near the 
origin. The surface features will therefore dominate the 
scattering unless incident energies in the BeV region 
(Ee5>fic/a, where a is the nuclear radius) are used. It is 
not surprising therefore, that as far as the inelastic 
scattering is concerned, the form of ph(r) is well repre
sented by a peak at the nuclear surface4; but what is 
interesting is the possibility of relating this form to the 
ground-state distribution in a simple fashion. Therefore 
a model has been adopted in which the transition charge 
distribution is "tied" to the ground-state distribution 
by treating it as a distortion of po(r). There is consider
able latitude here, both in the mode of distortion as
sumed and in the choice of the shape of p0(r) (which 
must however conform to a given half-density radius a 
and diffuseness /, as defined by Hofstadter5). Three 
expressions for PL(?) have been used in this work, two 
of which take the Fermi shape, 

PF(T) = PQ l+exp| ai (2) 

for the ground state, where /=4.4zi, but differ in the 
mode of distortion. Explicitly: 

pLV{r)=pLr^{dpF/dr) (3) 
and 

PL(2)(r)=PLr(dPF/dr), (4) 

where the first is the result of assuming incompressible 

3 See Appendix, Eq. (A22). 
4 See, for example, R. Helm, Phys. Rev. 104, 1466 (1956). 
5 R. Hofstadter, Ann. Rev. Nucl. Sex. 7, 231 (1957). 
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and irrotational fluid flow and the second would result 
from giving the ground-state distribution a uniform 
radial strain. Modes 1 and 2 become identical for quad-
rupole transitions and this case was discussedjn II. A 
third mode is obtained by taking a*different Junction 
for po(r), namely, 

% 

PiW = P o { l - e x p [ - ( ( r - ^ ) 2 ] } , for r<c 
= 0, for r> c, 

(5) 

where the choice d=3.7si and c=a+3.1z1 gives^the 
same a and t as the Fermi shape. Mode 3 is then defined 
to be 

PL™{r)=pLr^{dPl/dr). (6) 

It is clear that these modes claim no special distinction 
on dynamical grounds but merely serve as prescriptions 
in our attempt to demonstrate that the transition charge 
density is essentially governed by the same parameters 
as the ground-state density. The third parameter 6L 

governs the over-all normalization of the cross section 
and this may be determined by fitting to the experi
mental cross section. The result is then expressed in 
terms of the reduced transition probability 

B(EL) = (2L+1)( frLpL(r)r'dr) . (7) 

III. THE DISTORTED-WAVE CALCULATIONS 

In order to take account of the distortion of the inci
dent-electron wave^function by the static Coulomb field 
of the nucleus, the method of partial-wave analysis of 
the Dirac equation in a central field has been used, as 

IOOI 

RELATIVE CHANGE 
IN RADIUS 

FIG. 2. Change in nuclear radius needed to correct Born approxi
mation cross section for L = 2 as a function of Z. Negative Z 
corresponds to positrons. 

described in I. A brief resume of this method and discus
sion of the approximations applied in the present calcu
lations are given in the Appendix. Some general obser-
varions on the effect of the Coulomb field are made here, 
which are intended to apply to electrons above 100 MeV 
(i.e., of sufficiently high energy to reveal something 
about nuclear structure). For this purpose it is con
venient to distinguish nuclei of "medium" charge (say 
Z<40) from the "heavy" group (Z>40). In the medium 
group it is possible to describe the behavior of the dif
ferential cross section, at least for scattering in the for
ward hemisphere,6 in terms of a modification of the Born 
approximation. The lowest order effect of the potential 
is to contract the electron wavelength near the nuclear 
surface or, equivalently, to produce an apparent dila
tion in the size of the nucleus of order aZ/Ee (a is the 
fine structure constant and Ee the incident electron 
energy). As a result the Born approximation cross-sec
tion curve should be shifted to the left (smaller angles) 
for electrons and to the right for positrons; this is 
evident from Fig. 1 in which the distorted-wave calcu
lations for 187-MeV electrons and positrons scattering 
from Sr88 are compared with the Born approximation. 
An example of the behavior of this correction as a func
tion of Z is shown in Fig. 2; this curve is not intended 
to be precise since the criterion for determining the cor
rection is, itself, imprecise. It is also clear from Fig. 1 
that the peak value of the relative cross section 
o-(0)/<rMott(0) is unchanged by the introduction of dis
torted waves. This holds even for large distortion as in 
the case of electron scattering from Pb208, shown in Fig. 
3, although here the departure from the diffraction 
shape of the Born approximation is manifest. 

6 This appears to be independent of energy and of the multipole 
order of the transition. It is evident that for higher incident 

FIG. 1. Relative cross sections for 187-MeV electrons and energies the cross section becomes more "Born-like" over a wider 
positrons scattered from Sr88 with an E2 excitation compared with range of momentum transfer, but this range still corresponds to 
the corresponding Born approximation. forward scattering. 
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FIG. 3. Relative cross section for an E3 excitation in Pb208 

compared with the corresponding Born approximation. 

IV. COMPARISON WITH EXPERIMENT 

Available data7 in the medium charge region are most 
complete for the nickel isotopes. Ni58 shows electron 
induced excitations at 1.45, 2.5, 3.2, 3.5, 4.5, and 7.55 
MeV and Ni60 at 1.33, 2.50, 4.05, and 5.1 MeV. Those 
at approximately 1.4, 2.5, and 4.1 MeV probably cor
respond in the two nuclei and have fairly well-established 
spins (2+, 4+, 3~, respectively). The data of the last 
two of these have been compared with the predictions 
of the distorted-wave calculation using both mode 1 
and mode 2 [Eqs. (3) and (4)]. The results are shown, 
together with the corresponding levels in Co59, in Figs. 
4 and 5. (Similar comparisons for the levels around 1.4 
MeV were shown in II to be satisfactorily interpreted 
as E2 excitations.) For the octupole case the features 
of the angular distribution seem to be well represented 
by mode 2 at angles less than 65°. The enhanced cross 

FIG. 5. Calculated 
relative cross sections 
for £4 excitations in 
Ni58, Ni60, and Co59. 
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section beyond 65° could be suggestive of additional 
structure in the transition charge distribution inside 
the nuclear surface which our model is not designed to 
take into account. The £4 case does not show sufficient 
consistency among the three nuclei to admit any definite 
comment beyond the observation that mode 2 is ade
quate. The third mode [Eq. (6)] is not shown, but 
gives a curve whose shape is little distinguished from 
mode 2 in this range but in magnitude is considerably 
larger, and hence, while being an equally good fit to 
the data, requires a value of B(EL) which is consider
ably smaller than that required by mode 2 (see Table 
I for comparison). With this reservation on the value 
of the reduced transition probability, mode 2 has been 
used as the standard for all subsequent anaylses of 
nuclear transitions. Figures 6 and 7 show four levels in 
Cu63 reported by Kendall8 and it is again remarkable 
that where points are shown beyond 70° they do not 
lie on the calculated curve. 

Heavy nuclei are represented by the pair, Pb208 and 

FIG. 4. Calculated 
relative cross sections 
for E3 excitations in 
Ni58, Ni60, and Co69. 
Modes 1 and 2 are 
specified in the text. 
The data points for 
Figs. 4 and 5 are 
taken from Ref. 7. 
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FIG. 6. Calculated 
relative cross sections 
for E2 and £4 exci
tations in Cu63. The 
data points for Figs. 
6 and 7 are taken 
from Ref. 8. 

T - ~ r T I - T -

A.U.L. E, • 183 MtV 
| A |.2 M » V Excitation 

A 5.5 MeV Excitation (xlO~') 

9 (Degrees) 

8 H. W. Kendall and Jan Oeser, Phys. Rev. 130, 245 (1963). 



B948 O N L E Y , R E Y N O L D S , A N D W R I G H T 

TABLE I. Values of the reduced transition probability for elec
tron induced electric multipole transitions. Experimental data 
are taken from Refs. 4, 7, and 8. For explanation of "Mode" see 
Sec. II. 

Nucleus 

Ni58 

Co59 

Ni60 

Cu63 

S r 88 

pb208 

Bi209 

Transi t ion 
energy 
(MeV) 

1.45 

2.50 

4.50 

1.30 
2.70 
3.95 
1.33 
2.50 
4.05 
1.2 
2.6 
3.6 
5.5 
1.85 
2.76 
2.60 
4.30 

5.8 

2.60 
4.30 

Mult i -
polari ty 

(L) 

2 

4 

3 

2 
4 
3 
2 
4 
3 
2 
3 
3 
4 
2 
3 
3 
2 
4 
3 
5 
3 
2 
4 

LB(EL)/e*l 
( F 2 L ) 

1.66X103 

9.3 X102 

2.18X10* 
1.04X10* 
2.70X104 

1.61 X104 

1.14X103 

2.07X105 
1.56X104 

1.74X103 

3.58X10* 
3.59X104 

9.50X102 

1.50X104 

2.03 X104 

3.05X105 
1.00X103 

4.78X104 

8.8 X105 
1.63 X104 

4.08X107 

6.36X105 
7.74X108 

9.42X105 
1.73X104 

3.90X107 

Mode 

2 
3 
2 
3 
2 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

Bi209, which have levels in common at 2.6 and 4.3 MeV 
of which the first is known to be9 E3 and the second is 
thought to be7,8 £4 . This calculation supports the E3 
identification of the 2.6-MeV level (Fig. 8) but does not 
produce a convincing £ 4 fit to the electron scattering 
data on the 4.3-MeV excitation (Fig. 9). The data on 
Bi209 show a clear preference for E2 whereas the cor
responding level in Pb208 admits an E2, £4 , or less likely, 

E3 Excitation* in Cu* ' 

E. • 183 MtV 

FIG. 7. Calculated 
relative cross sections 
for ES excitations in 
Cu63. 
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E3 interpretation. A distinction among these choices 
could be made if data at low-momentum transfers were 
available. A similar situation occurs for the 5.8-MeV 
level in Pb208 also reported by Kendall8 and shown in 
Fig. 10. In this case, the more conservative E3 inter
pretation would be tenable if the cross section were 
known to be large around 30°. As it stands the E5 
curve deviates from the measured points only beyond 
the 70° point, and therefore cannot be ruled out. 

V. INELASTIC SCATTERING AT LOW ENERGIES 

In the examples cited in the previous section where 
the multipolarity of a transition is in doubt, the question 
could be settled if the scattering at low-momentum 
transfers were known. In fact the examination of the 
nuclear structure would be more fruitful, if independent 
measurements could be made of both the multipolarity 
Z, and the reduced transition probability B(EL). 
But these quantities should be precisely the governing 
factors of the behavior of inelastic electron scattering 
at low-momentum transfer where the cross section is 
insensitive to the details of the nuclear structure. 
The Born approximation calculation has the well-known 

9 See Nuclear Data Sheets, compiled by K. Way et at. (Printing 
and Publishing Office, National Academy of Science-National 
Research Council, Washington 25, D. C ) , NRC 61-3-127. 

4.3 MeV Excitation 

FIG. 9. The 4.3-
MeV levels in Pb208 

and Bi209. The calcu
lated curves shown 
are the "preferred 
fits." 
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FIG. 10. The 5.8-MeV level in Pb208. The data points are 
taken from Ref. 8. The calculated curves shown are the "preferred 
fits." 

form10 

a{q)/*MotM=^HEL)lqL/Ze{2L+\)\^ as g-> 0 (8) 

which is model-independent, as expected. There is, 
therefore, some interest attached to the question of 
whether a comparable relation emerges from the dis
torted-wave treatment, particularly because measure
ments in this region would have to be made at low inci
dent electron energy where the distortion is greatest. 
From the appearance of Figs. 1 and 3 it is evident that 
the electron cross section will be enhanced in this region 
but is not seriously changed in functional form; i.e., 

[or (?)/o-Mott ( ^ ) ] d i s t = X (Ee) [ > ( ^ / W o t t (? ) l o r n . ( 9 ) 

To display this, the calculated relative cross section at 
50 MeV for scattering from Pb208 (where there is con
siderable distortion) has been plotted against q on a 
log-log scale in Fig. 11. The q2L law still holds to a 
high degree of accuracy and should, in principle, afford 
a simple method for the extraction of both the multi-
polarity and reduced transition probability. If these 
data were available, many of the ambiguities of Table I 
could be resolved. 

VI. CONCLUSIONS 

The feasibility of determining the electromagnetic 
structure of excited nuclear states by electron scattering 
is not really in doubt. The foregoing examples show that 
the general behavior of the electron inelastic cross 
section can be accounted for by a pronounced peak in 
the transition charge distribution at the nuclear surface, 
derived from the ground-state charge distribution in 
the manner of Eq. (4), for example. This suggests that 
some of the spatial characteristics of the collective 
oscillation are already contained in the collective de
scription of the ground state (e.g., its distribution of 

charge); whereas the energy and strength of any given 
level may well depend on the intricacies of nuclear 
structure. Comparison of electron-scattering data with 
nucleon-scattering data11 suggests that the charge 
distribution follows the same general mode of deforma
tion as that used in the corresponding nuclear potential 
well, to account for neutron and proton excitation of 
these levels. This, of course, is in accord with the idea 
of self-consistency. The full value of inelastic electron 
scattering lies in a consistent study covering a wide 
range of electron energies and angles (including low-
energy scattering). This could provide a reconstruction 
of the structure of the excited state independent of any 
specific nuclear model which would then serve as a 
"constraint" on nuclear model treatments, in the same 
way as the knowledge of the ground-state charge dis
tribution has helped in the determination of, for in
stance, the ground-state potential of the nuclear shell 
model. 

Additional information on nuclear structure may be 
gained by analyzing electron-scattering data for mag
netic multipole excitations and electric multipole 
excitations for scattering around 180°, and such calcu
lations are in progress. 
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APPENDIX 

A resume of the distorted-wave treatment for elec
trons, and discussion of the approximations applied in 
this paper, are presented here. 

The solutions of the Dirac equation for an electron 
of energy E, and mass me, in a central potential, V(r), 
are well known and have the form12 

fs(p,*)= 
iMp,r)x-S(f) 

(Al) 

Here bars are added to 3K and x//^ to denote the values 
of these in the final state [if the distorting potential, 
V(r), is assumed to be unchanged in the final state the 
bars can be omitted]. 

The interaction Hamiltonian operator may be sepa
rated into scalar and vector parts in the form 

Hint= -^a[_pNG(rN,xe)pe~]N'G{xN,re))e~], (A6) 

where a is the fine structure constant, pN, }N,(pe,h), a r e 

the change and current density operators for the nucleus 
(electron), and G is the Green's function: 

where p2=E2—me
2 (the convention ft = c=l has been 

used throughout), and the angular momentum functions 
are given explicitly by 

pioi\TN-re\ 

G(xN,xe) = -
4dr#—r« 

(A7) 

x / = E ^ _ T T ; ^ r T ( f ) X
T (A2) 

The radial functions, fK and gK, are solutions of the 
coupled differential equations 

dr 

dgK 

-1 
-fK-[_E-ni-V{r)1gKy 

(A3) 
K+l 

= [_E+M~V{r)-]fK g 
dr r 

The appropriate combination of the if/^ to describe an 
incident distorted wave for an electron with energy, 
Ei9 and momentum, pz, is 

\ 2EiV / ^ 

X F r m * ( f t ) ^ f e r ) . (A4) 

Here, m ( = z b | ) is the eigenvalue of the polarization 
operator,12 0Z, V is the volume of normalization, and 
8K is the phase shift of partial wave, K. A similar wave 
function describes an outgoing distorted wave with 
energy and momentum, Ef, p / ; 

/Ef+m\u* 
l A / w = M ) Z exp(-i8K)ilC^mmti

1^ 
/Ef+me\

l 

\ 2EfV ) 

expressed in terms of the electron coordinate, re, and 
the collective nuclear coordinate, xN, where co=Ei—Ef, 
the energy transferred in the transition. Let ^i(Ii,Mi) 
and tyf(If,Mf) represent the initial and final nuclear 
wave functions, with Ii and Mi (If and M/) the initial 
(final) angular quantum numbers. Then the transition 
amplitude is given by 

A (Mi,Mf,nn,mf,pi,Vf) 

= <^/( / / ,M / )^ /«/ |F i n t | ^ ( / , . , i l f<Viw <>- (A8) 

The evaluation of this requires the matrix elements for 
p and j which, for the electron, are explicitly 

Pe (miyMhXe) = ffintyni , (A9) 

ie(mi,mf,re)=1'fmff<*l'imi, (A10) 

and, for the nucleus, are written as a multipole sum, 

PN(Mi,Mf,rN) = L JLM(Mi,Mf,rN) YL
M(fN), (All ) 

LM 

1N(Mi,Mf,xN)= £ IjLM(Mi,Mf,rN)YjL*(fN). (A12) 
JLM 

the exact form of which depends on the nuclear model 
assumed. For electric multipole excitations A now ap
pears in the form 

A (Mi,Mf,mi,mf,pi,pf) 

= L ELM(Mi,Mf,mi,mf,pi,pf), (A13) 

X Yi^m* (£/)&* (£/,r) . (A5) where (for Pi=p%z) 

XC^Mm+MiLi'Wttyjl\%L)Yv"**^'($^ , (A14) 

12 M. E. Rose, Relativist™ Electron Theory (John Wiley & Sons, Inc., New York, 1961). 
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where 

RLM(Mi,Mf,K,ic')= (2L+l)ic» / / r^Hr^re
2dre{JL{^r<)hL{l){wr>)JLM(MhM//N) [/*/*'+£*£«'] 

+ (i/LL(2L+l)Ji*)jL-1(o>r<)hL-1^ 

,L+1,M 

where bars are again used to denote final-state values 
and r>, r< are the greater and lesser of r^, re. The expres
sion for the amplitude for a magnetic multipole transi
tion is similar in form to that above and not given 
explicitly here. 

The differential cross section for a pure electric multi-
pole transition of order L, when the electron beam is 
unpolarized and the target nuclei unaligned, is given in 
terms of the amplitudes by 

a{0) = © 
2 Pf 

Pi 

1 

x E I 
MiMs, 

mitm/,M 

2 ( 2 J d - l ) 

ELM(Mi9Mf,mi,mf,pi,pf) | 2 , (A16) 

where 0 is the angle between p; and p/ (the scattering 
angle). A useful measure of the strength of the transition 
is given by the reduced transition probability, B(EL), 
defined by 

B(EL) = 
(2/d-l) 

X E 
MMiMf / 

<PrNrN
L YL

M (fN)PN (Mi,Mf,tN) • (A17) 

In the calculations presented in the main text only 
the first term of Eq. (A6) (the scalar term) is retained 
and evaluated in the long-wavelength limit (coa<l, 
where a is the nuclear radius). Further, the distortion 
due to the static Coulomb field of the nucleus, V(r), is 
assumed to be the same in both initial and final states, 
and consequently the distinction denoted by bars in 
Eqs. (A5) and (A15) has been dropped. Advantage has 
been taken of the dependence of JLM on Mi and Mf 
to write 

JLM(Mi,Mf,rN) = CMiMMf
IiLIfPL(rN), (A18) 

where PL(?) is the quantity which appears in Eq. (1) 
of the text. The sum over M% and Mf in Eqs. (A 16) 
and (A17) can now be performed explicitly to render13 

a(d)=(l/2TyW(pf/pi)EiEA 
XY,mi,mf,M\ELM(ini,mf,Pi,Pf)\2 ( A 1 9 ) 

13 The corresponding expression in I, Eq. (2.13), is missing a 
factor of §. 

and 

B(EL) = (2Z+1)( J rL
PL(r)r2dr) , (A20) 

where ELM is given by Eq. (A 14) having lost its de
pendence on Mi and Mf because RLM reduces simply 
to an integral of the form: 

RL(K,K')=[ UJ*'+g*i*'lCL(r)dr, (A21) 
Jo 

where the cutoff function is 

J r 

CL(r) = rL+2\ PL{rfy-L+W 

+r-L+i f 

Jo 
PL(r

fyL+2drf. (A22) 

The evaluation of these integrals is discussed in I. 
Clearly Cz,(?')^<'r~Zrfl outside the nucleus (PL(/)—>0), 
and for angular momentum components for which 
/c, Kf>pid, the contribution to the integral of the in
terior region may be neglected and RL approximated 
by the "point nucleus" expression, 

- / 
RL(K,K?)~ (fJK>+gKgK>)r-^dr, (A23) 

which can be expressed in a closed form.14 

In order to investigate the effect of neglecting, in the 
expression for the cross section, the current terms in 
Eq. (A6), a specific nuclear model is considered. The 
model is the inhomogeneous charged liquid drop model 
which is assumed to vibrate with irrotational and in
compressible liquid motion.15 The transition charge and 
current densities, in this case, have multipole com
ponents given by 

JLM(Mi,Mf,rN) = CMfMMiWiPifN^dpo/drN, (A24) 

IjLM(Mi,Mf,rN) = djiL+1CMfMMiIfLIi(-io))8L 

XZ(2L+l)/Ljl2rN
L-1p0,(A25) 

where p0 is the equilibrium charge density. Eq. (A24) 
together with Eq. (A18) give Eq. (3) in the text; the 
effect of including I JLM is investigated here. I t can be 
shown directly that, in the Born approximation, the 
effect of including the current terms, in this case, is to 
introduce a simple angular-dependent factor in the 

14 J. T. Reynolds, D. S. Onley, and L. C. Biedenharn, J. Math. 
Phys. 5, 411 (1964). 

" L. J. Tassie, Australian J. Phys. 9, 407 (1956). 
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cross section: 

-{-current 

i7(e)[<r(0)]chargeonly. (A26) 

Explicitly, 

<F[E&f-m*-piPf cosd~]+Pi2pf
2 sin20 

x (A27) 
q'ZEiEf+m'+PiPf costf] 

I. INTRODUCTION 

TH E primary purpose of this work was determina
tion of the fission barrier of the compound 

nucleus Tl201 produced by bombardment of Au197 with 
helium ions. The interest in reliable measurements of 
fission barriers is twofold. First, barrier heights are 
among the most fundamental and, at the same time, 
the simplest predictions of a theory of fission. In par
ticular, within the framework of the liquid-drop model, 
accurate theoretical values of relative barrier heights 
have become available recently.1,2 Most of the experi
mental information on fission barriers has so far been 
confined to the heavy-element region, where the barrier 
heights are only a few MeV, and the relative size of 
corrections due to shell effects is almost of the same 
order of magnitude.3'4 As a result, the interpretation of 

* Present address: Kellogg Radiation Laboratory, California 
Institute of Technology, Pasadena, California. 

f Present address: General Electric Company, Schenectady, 
New York. 

1 V. M. Strutinski, N. Ya Lyashchenko, and N. A. Popov, Zh. 
Eksperim. i Teor. Fiz. 43, 584 (1962) [English transl.: Soviet 
Phys.—JETP 16, 418 (1963)]. 

2 S. Cohen and W. J. Swiatecki, Ann. Phys. (N. Y.) 22, 406 
(1963). 

3 W. J. Swiatecki, Phys. Rev. 101, 97 (1956). 
4 Sven A. E. Johansson, Nucl. Phys. 22, 529-552 (1961). 

where q=q(0) is the momentum transfer in the col
lision. As is easily seen, under conditions for which 
me, oj«Et-, this factor is essentially unity except in the 
extreme forward and backward directions. Although, 
as has been pointed out, the Born approximation is not 
an accurate approximation over the complete range of 
6 considered, the above result should permit the con
clusion that the effect of these current terms is negligible 
over this range, even at the minima of the form factors. 

the poor agreement between experiment and the simple 
liquid-drop theory is difficult in this region of the 
periodic table. The situation could be clarified by an 
extension of barrier measurements to the lighter ele
ments below lead, where the barrier heights are ex
pected to increase rapidly to 20 MeV and more. 

The second reason for the importance of fission barrier 
measurements is in connection with the determination 
of adjustable constants in semiempirical mass for
mulas.5 The measurement of a fission barrier, equiva
lent to the measurement of the mass of a nucleus in its 
distorted "saddle-point configuration," is potentially 
the most accurate way of determining the ratio of the 
nuclear surface tension to the electrostatic energy. The 
limited use made so far of fission barrier measurements 
in fitting constants in semiempirical mass formulas is 
probably due to the inadequate understanding of 
fission barrier systematics in the heavy-element region. 
A clarification by barrier measurements for lighter 
elements would reduce these uncertainties and would 
add considerably to the understanding of the syste
matics of nuclear masses in general. 

6 W. J. Swiatecki, in Proceedings of the Second International 
Conference on Nuclidic Masses, edited by W. Johnson, Jr. 
(Springer-Verlag, Vienna, 1963). 
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Fission Barrier of Thallium-201 

DONALD S. BURNETT,* RAYMOND C. GATTI, FRANZ PLASIL, P. BUFORD P R I C E , ! 

WLADYSLAW J. SWIATECKI, AND STANLEY G. THOMPSON 

Lawrence Radiation Laboratory, University of California, Berkeley, California 
(Received 23 December 1963) 

A new method involving the detection of fission fragments in mica has been applied to the measurement of 
the fission cross section of the compound nucleus Tl201 produced by bombardments of Au197 with helium ions. 
These data have been interpreted in terms of an expression for the ratio of fission to neutron-emission prob
abilities similar to those used conventionally, but modified to include the effect of quantum-mechanical 
barrier penetrability. In this way a height of 22.5d=1.5 MeV was found for the fission barrier of Tl201 and a 
lower limit on the width could be established. The above value of the barrier, when interpreted on the basis 
of the liquid-drop theory, leads to an accurate determination of the ratio of the electrostatic to the surface 
energy of nuclei. This serves to establish the constant of proportionality between the "fissionability param
eter" x and the value of Z2/^4 as follows: x = (Z2/4)/(48.4±0.5). This measured barrier height, when 
added to the ground-state mass of Tl201, gives a saddle-point mass of this nucleus equal to 200.9949=b0.0015 
mass units (carbon scale). 


